Solving fluid flow problems using semi-supervised symbolic regression on sparse data
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Classification Using Sparse Gaussian Process Regression
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and ...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملOn semi-supervised linear regression in covariate shift problems
Semi-supervised learning approaches are trained using the full training (labeled) data and available testing (unlabeled) data. Demonstrations of the value of training with unlabeled data typically depend on a smoothness assumption relating the conditional expectation to high density regions of the marginal distribution and an inherent missing completely at random assumption for the labeling. So...
متن کاملSparse Semi-supervised Learning Using Conjugate Functions
In this paper, we propose a general framework for sparse semi-supervised learning, which concerns using a small portion of unlabeled data and a few labeled data to represent target functions and thus has the merit of accelerating function evaluations when predicting the output of a new example. This framework makes use of Fenchel-Legendre conjugates to rewrite a convex insensitive loss involvin...
متن کاملSemi-Supervised Regression using Spectral Techniques∗
Graph-based approaches for semi-supervised learning have received increasing amount of interest in recent years. Despite their good performance, many pure graph based algorithms do not have explicit functions and can not predict the label of unseen data. Graph regularization is a recently proposed framework which incorporates the intrinsic geometrical structure as a regularization term. It can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2019
ISSN: 2158-3226
DOI: 10.1063/1.5116183